
7D-AISS 46 PARALLEL SOLUTION OF
LINEAR S -YSTEMS WITH STRIPED

SPARSE i/i
MATRICES PART i V (U) PITTSBURGH UNIV PA INST FOR
COMPUTATIONAL MATHEMATICS AND APP R MELHEM JAN 86UNCLASSIFIED ICHA-86-91 N68814-85-K-0339 F/G 1211 M

EhhEEEEEEEEEEE
EhEEEEEEEEE/hE
EglhEEEEEEEEl

UI

11111,__,*2,12

MICR COPY RES LUTO TES C AR

NATIONAL BUREAU OF STANDARDS- 1963-A

N1:y

mu -

II!III'

DTIC
$ S i"LECTE sk

AP 0D 86

INSTITUTE FOR COMPUTAT1roK,,i..

' MATHEMATICS AND APPLICATK IC'

Technical Report ICMA-86-91 January, 1936

PARALLEL SOLUTION OF LINEAR SYSTEMS WITH
STRIPED SPARSE MATRICES *

PART 1: VLSI networks for striped mat -,-

by

Rami Melhem **

Department of Mathematics and Statistics

University of Pittsburgh

, Li!

4Pptolr~d tat vubl~c ISIOQW

K I

-I DTIC
ii

I[/S ELECTE i1

A 19860
D

Technical Report ICMA-86-91 January, 1986

PARALLEL SOLUTION OF LINEAR SYSTEMS WITH
STRIPED SPARSE MATRICES *

PART 1: VLSI networks for striped matrices

by

Rami Melhem **

I
Institute for Computational Mathematics and Applications

Department of Mathematics and Statistics
University of Pittsburgh

DISTRIBMTI0N STATEMEN4T A

Approved tor public release
V dtrbution Unlimited

This work is, in part, supported under ONR contract

kN00014-85-K-0339

** On leave from the Department of Computer Science, Purdue
University, West Lafayette, IN 47907

VI"'

PARALLEL SOLUIT ION OF LINEAR SYSTEMS WITH

STRIPED SPARSE MATRICES

PART 1: VLS[networks for striped matrices

Rami Melhem

ABSTRACT

The multiplication of a matrix by a vector and the

solution of triangular linear systems are the most demanding

operations in the majority of iterative techniques for the

solution of linear systems. Data-driven VLSI networks that

perform these two operations, efficiently, for sparse

matrices are introduced. In order to avoid computations

that involve zero operands, the non-zero elements in a

sparse matrix are organized in the form of non intersecting

stripes, and only the elements within the stripe structure

of the matrix are manipulated. Detailed analysis of the

networks proves that both operations may be completed in n

global cycles with minimal communication overhead, where n

is the order of the linear system. The number of cells in

each network as well as the communication overhead are

determined by the stripe structure of the matrix. A compan-

ion paper E12] 'examines this structure for the class of

sparse matrices generated in Finite Element Analysis. .

') This work is, in part, supported under ONR contract
N00014-85-K-0339.
-") On leave from the Dept. of Computer Science, Purdue
Univ., West lafayette, IN 47907.

N '- . Introdnt ion

PIterative solvers for large sparse linear systems of

equations are, once again, becoming more and more competi-

tive with direct solvers (6,7]. In this paper, we consider

the two basic operations that constitute the balk of the

work in most iterative methods. Namely, the multiplication

of a matrix by a vector, and the solution of triangular

linear systems. The computations involved in these two

operations are quite regular and thus, naturally amenable to

efficient implementations on regular VLSI networks; that is

systolic (9] and data-driven (sometimes called self-timed)

S-: [10] arrays.

However, large systems that appear in practice are usu-

.* ally sparse, and hence, seem to be inefficient for solution

on regular VLSI networks. More specifically, if C% of the

elements in the coefficient matrix are zeroes, then C% of

the resources in the network are wasted in trivial opera-

tions that involve zero operands, and the corresponding data

comunications.

In order to avoid this waste and to retain the advan-
for

tage of having fast specialized cells and efficient local

comounications, it is suggested 17n [13] to consider regular 3 0
.ed 0

data-driven networks that are designed for operations on ?..........................

dense matrices, and then to add to each cell in the networks
*1

the capability of recognizing and skipping trivial opera- .bility Codes

Vtions. A detailed study of the performance of the resulting Ai and/or
Special

-2-

networks shows large speed ups for highly sparsed matrices.

In this paper, we present a different approach for

using regular data-driven networks in sparse matrix manipu-

lation. It is also based on performing only non-trivial

operations, but is primarily aimed at reducing the number of

computational cells in the network, rather than increasing

its speed.

In order to be more specific, consider, for example,

the multiplication of an nxn banded matrix A by a vector.

This operation may be performed in 2n+b cycles on a data-

driven (or systolic) network [9] that uses b cells, where b

is the band width of A. If A is sparse, then the approach

of (13] uses the same number of cells b, but takes advantage

of the sparsity of A to reduce the multiplication time con-

siderably. On the other hand, the approach presented here

takes advantage of the sparsity of A to reduce the number of

cells to a number v, which is, usually, much smaller than b.

The multiplication, in this case, is completed in approxi-

mately n cycles.

The reduction of the number of computational cells is

based on the assumption that the non-zero elements of the

matrix are located in a few stripes which are almost paral-

lel to the diagonal of the matrix. A specific cell is then

assigned to perform the operations associated with the ele-

ments of a particular stripe. Clearly, the crucial issue is

to choose a stripe structure that minimizes, or even

j1

-3-

eliminates, data conf lict.

The network that we introduce here is especially suit-

able for the type of matrices that result in finite element

analysis. More specifically, for this type of matrices, the

band-width depends on the order of the matrix (usuaLLy,

b-O(ryW), while the number of stripes wi is bounded by a

small number which depends on the maximum number of elements

that may share a particular node. In other words, unlike in

(13], the size of the network is independent of the size of

the problem.

At this point, we should mention that other different

approaches have been suggested for the parallel solution of

sparse linear systems. These include the application of

content-addressable VLSI networks (18], and data flow archi-

tectures (15,16] to the minimization of conflicts in data

access, the use of networks with interconnections that

reflect the underlying graph structure of the matrix [1,2],

and the use of multiprocessors with general interconnections

- [3,4].

We start in Section 2 by defining the stripe structure

of a general sparse matrix. In Section 3, we describe a VLSI

network that utilizes the stripe structure in the parallel

multiplication of a matrix by a vector. Then, we introduce,

in Section 4, the property of non-overlapping stripes and we

show that, if this property is satisfied in the input

" matrix, then the multiplication does terminate in n global

IM K&

cycles, where a global cycle includes some communication

activities, and a multiply/add operation. In Section 5, we

estimate the communication overhead in each global cycle,

and finally, in Section 6, we modify the matrix/vector mul-

tiplication network and obtain a network for the solution of

triangular linear systems.

e..

j ..

/,,

2. SILEE S3R!MPURES DE -ZERS MATRLT CR

We define a stripe structure of a sparse matrix to be a

set of stripes that are almost parallel to the diagonal of

the matrix, and that contains all its non-zero elements.

More specifically, given an nxn matrix A, with lower and

upper bandwidthes b1 and b2 , respectively, we augment the

set T - ((i,j); li,jan} of positions of A with the two tri-

angles T1 - {(i,fl; i-l,...,bl,j-i-bl,... ,0 } and T2 -

{(i,j); i-n-b2+l,...,n, J-n+l,...,i+b2), and assume that

S ai,F -0 for (i,j)eT 1 U T2. This expands the set if allowable

positions of A to include the band ((i,j);

ldian, i-b ajdi+b2). Now we may define the following:

nflinition Jl: Let I n-{1,...,n). A stripe S of the matrix A

is a set of positions S - ((i,o(i)) ; I I), where a is

an increasing function; that is, if i < j and

(i,a(i)),(j,o(j)) 6 S, then a(i) < o(j). If S contains one

entry for each row of A; that is S - ((i,a(i)) ; ieIn), then

S is called a full stripe.

"arLnit'in 2.: Two stripes S 1 {(i,op())} and S 2

.(i, 2 (i))) are ordered by the relation S (S2 (S1 is less

than S2) if for any i in the domain of ol and j in the

domain of 02,
.

i d j implies that o1(i) < o2 ().

Note that if S 1 and S 2 are full stripes, then S 1 S 2 if

o1(i) 02 (i) for i-l,...,n.

-6-

nefinii.D : A stripe structure of a matrix A is a sequence

of 9 stripes Si <1... < SV? such that a ii 0 if

(i,j)% SIU...U S, (see Fig l(a), where 1.1 and 'x' indicate

a zero and a non-zero element, respectively, and each ele-

ment included in a stripe is enclosed in a circle).

..

stri e Skhste for •(~~ k) ; 'eII'fo oecn

* *

(a) with 5 stripes (b) with 5 full, parallel, stripes

Fig 1 - Examples of stripe structures

A special class of stripe structures is the class of !

structures with parallel stripes, in the sense that each

stripe 5 k has the form {(i~i+sk) ; ie Ig In}, for some con-

stant m . atrices that can be covered by parallel stripes (eF

occur frequently in practice, especially in the solution of
.

partial differential equations on rectangular grids. For

example, if the nodes of the grid are numbered regularly, "

and a five point star approximation is used to discretize
the differential equation, then the resulting coefficient i

matrix may be covered by five parallel full stripes (see Fig,,

l(b)). Similarly, if finite element analysis is used with

3, 4, 6 or 9 node Lagrangian elements, then the resulting

- L. - I.

-7-

stiffness matrix may be covered by 7, 9, 19 or 25 parallel

l full stripes, respectively. Note that in order to obtain

full stripes in the examples of Fig l(b), we include in each

stripe few positions (i,j) for which a =0. Note also that

if the finite element grid is not rectangular, which is usu-

ally the case, then the resulting matrix may not be covered

by parallel stripes.

7Matrices with parallel full stripes may be efficiently

stored diagonal by diagonal. This diagonal storage scheme

may be easily extended to matrices with general stripes.

More specifically, given a matrix A with v stripes, we may

" store the elements of the kth stripe in the kth column of an

nxw rectangular array EA , such that, for i-l,...,n and

k-1, . . .

iIk(i) if (i ak(i))ESk

EA(ik) - 0 otherwise (l.a)

In addition to EA , another nxv integer array PA is needed in

order to store the values of ak(i). In other words,

(ok(i) if (i,Ok(i))ESk

PA(i,k) - 1-b otherwise (l.b)

Note that -b 1 is not a valid column number in T U T1 U T2 .
Note also that a more efficient scheme for storing the

stripes of A may be obtained if we compact every column k of

EA and PA by storing only the entries corresponding to the

elements of Sk , and then keep the compacted columns of EA

and PA in two linear arrays. Of course, an additional array

UA
.. A - ,

• ... , .'.:. . :.-'. .,, - . -.. .- , . ;. ,. ,. .. *. -.-. -. . ,-- - -A -. . - .

is needed in this case in order to keep track of the row

number of each element in EA*

Clearly, many stripe structures may be constructed for

• ,a given sparse matrix. Among the different structures for

any banded matrix is the structure obtained by considering b

parallel stripes, where b - b1 +b2 +l is the band-width. How-

ever, in order to take full advantage of the above stripe

storage scheme, we should determine the stripe structure of

-> the matrix that minimizes the number of stripes. An algo-

* rithm that constructs the optimal stripe structure for any

specific sparse matrix is given in the Appendix.

The efficiency of the stripe storage scheme for any nxn

matrix A striped with w stripes is given by the ratio n"nv

where rA is the number of non-zero elements in A. Although,

this ratio may be low for general sparse matrices, it is

shown in [12] that the stripe scheme is very efficient for

the type of matrices resulting from the discretization of

partial differential equations. Moreover, the stripe scheme

has an important advantage over other sparse schemes [8],

namely, it is a regular scheme that may be explored effi-

ciently in parallel processing.

! %p,

AI

. . , 'W .". ". -. -. - .- -. . - -. • - -•- ,- " - - ., .,, , . , . . ," . .

-9-

.. MULTIPLICATION DE A qI&LpE MATRIX RX A VECTOR

a.,. A WLA data drivennetwork

The systolic network given in [9] for the multiplica-

tion of a banded matrix A with a vector x uses b cells and

completes the computation of the product vector y-Ax in 2n+b

cycles, where n and b are the order and band-width, respec-

tively, of A. In this section, we modify this network such

that if A has v stripes, v << b, then the vector y may be

computed using a network of only v computational cells. In

order to be consistent with our future notation, we denote

the stripes of A by Sk , k--vI ,... '121 where r +V2+l-W.

2FT 1 2

_Tr K

Fig 2 - A network (MAT/VEC) for the multiplication of

-a striped matrix by a vector

In Fig 2, we show the modified network that we call

from now on MAT/VEC. Each cell in MAT/VEC has five input

- ports, namely Ir , r-l,..,5, and two output ports, namely 01

and 02* The elements of the vector x are fed to the network

from port 11 of the first cell and the elements of the

result-vector y, initialized to zero, are fed from the port

14 m

-10-

12 of the last cell. Successive non-zero elements in a par-

ticular stripe Sk ae supplied on port 13 of cell k in

increasing row order. Along with each element ai,ok(i)a Sk

supplied on 13 of cell k, the values of i and ak(i) are sup-

plied on the input ports 15 and 14, respectively. Note that

the row index supplied on I. may be eliminated if the

stripes are full or if the elements of column k of EA O'

defined by (1), rather than the elements of Sk, are supplied

to cell k. In this case an internal counter may be used to

keep track of the value of i.

Each communication link Aqtk directed from cell q to

cell k in MAT/VEC is regarded as a queue. Only cell q may

write on this queue and only cell k may read (and delete)

its front element. For simplicity, we will assume, for

now, that the queues have unlimited capacity. Then, we will

derive in Section 5 the actual size of the queues needed for

proper operation. Note that in practice, any communication

link is just a connector, and hence, any queues associated

with the link should be physically located in its source or -

destination cells (or distributed among the two).

In order to provide the flexibility needed to deal with

sparse structures, we assume that each computational cell

contains two counters CX and CY to keep track of the indices

of the data received on 12 and Il, respectively. We also

assume that the network is data driven, that is the cycle of

each computational cell is controlled by the availability of

1I -

the input data. Finally, in order to study the effect of

internal data conflicts on the operation of the network, we

assume that external data, that is data on ports 13, 14 and

I 5r as well as port I1 of cell VT2 and port 12 of cell -wi ,

are always available when needed. With this, the operation

of each cell k may be descr.ibed by the following cycle which

is executed repeatedly by the cell: (It] denotes the con-

tent of Ir, and 0r - Rx means that the value stored in the

internal register Rx is written on port 0).

CYCLE 1: /* Initially, CX-CY-0 '/

1) Ra - [13] ; Rj - [14] ; Ri - [15]

2) Do steps 2.1 and 2.2 in parallel

2.1) wait until data is available on I1

RX - [l] ; CX CX + 1

If CX (Rj Then Oie- Rx ; Go To 2.1)

Else JOIN step 2.2.

2.2) wait until data is available on 12

Ry - (12] C CY - C! + 1

If CY (Ri Then (02 - Ry ; Go To 2.2)

Else JOIN step 2.1.

3) Ry - Ry + Ra Rx

4) 01 .-L ;0 2 .- .

More descriptively, after a cell k receives aio(i) ,

(stop 1) it continues to transmit the components of x from

I I to 01 (stop 2.1), and the components of y from 12 to 02

(step 2.2), until it finds xok(i) , and Yi. At this time,

-12-

the inner product is computed (step 3), and the results are

written out (step 4). The JOIN statements in 2.1 and 2.2

indicate that step 3 should not start before both steps 2.1

and 2.2 are completed. Note that the parallel execution of

steps 2.1 and 2.2 guarantees that if any of the x or y data

streams are blocked, the other stream may continue flowing.

This parallel execution may be simulated by a busy wait loop

that polls ports I and 12 for data. More specifically, we

may replace step 2 in CYCLE 1 by:

2) While (CX < Rj) or (CY < Ri) Do

2.1) If (CX < Rj) and (data is available on I,) Then

{ - [I,] ; CX - CX + 1 ;

If (CX < Rj) Then 01 Rx }

2.2) If (CY < Ri) and (data is available on 12) Then

(Ry = (I2] ; C! - C! + 1

If (CY (Ri) Then 02 Ry }

Next, we show that the network described above does

compute the elements yi, i-l,...,n, of the product vector

y-Ax correctly if the matrix A has non-intersecting stripes.

A.Z. P oaf at

The following properties of the input will be used:

P) If a,o(U) an v,k(V) are the inputs to port 13 of

cell k at two consecutive cycles, t-l and t, respec-

tively, then v) u,

Y.

-13-

P2) From P1 and Definition 1, we have ak(v) > k(u).

b P3) The input matrix A is striped according to Definition

3; that is, Sk<Sq if k(q.

Let us first assume that the network will not reach a

dead state, that is every cycle t of any cell k will ter-

minate. From the operation of each cell (CYCLE 1), and Pl,

it is clear that every element yi that is read by cell k

(from 12) during cycle t satisfies u<imv. If i-v, then the

term [a.ok") xk(i)] is accumulated in yi before yi is

written on 02. On the other hand, if u(i<v, then yi is

copied unmodified to 02 . But in this case, Pl guarantees

that (i,ok(i)) 9 Sk , because otherwise ai, ak(i) should have

been supplied to 13 after au,ok(U) and before a, .

Given that any element of A that does not belong to some

stripe is equal to zero, we conclude that yi accumulates all

I n
the non zero terms of E ai'j xj during its flow from cell

1 1 to cell W 2 .

yIr ... x

£ 4

Fig 3 - A deadlock configuration.

LN

-14 -

In order to complete the proof, we need to show that

the network does not reach a deadlock state, where a cell k

is blocking the y data stream and another cell q, q>k, is

blocking the x stream (see Fig 3). More specifically, a

state in which

1) cell q is waiting for some y, that is locked behind

cell k, and

2) cell k is waiting for some xOk(v) that is locked

behind cell q.

Assume that this deadlock state is reached, and that the

data appearing on ports I and 12 of cells q and k, respec-

tively, are x and yi. Hence,

A h i and Ok(V) j (3)

The fact that yi is not copied to port 02 of cell k and x

is not copied to port 01 of cell q implies that ibv and

Jbaq(l). But i>v may only be satisfied if the previous

input on 13 of cell k, say auak(u) , satisfies u-i-, which

means that uuv and contradicts P1. Similarly, we may show

that J>a (1) contradicts P2. Hence

i - v and j - aq(A) (4)

From (3) and (4), we get

v d A and ck(v) % o (A)

which contradicts Definition 2 for Sk<Sq , and hence, given

that k(q, contradicts property P3 of the input.

~- 15 -

a.a. Paudo mntac snvchroni~af ion

aIn order to study the behavior and estimate the execu-

tion time of the network MAT/VEC , we follow the technique

suggested in [13] for the study of self-timed computations.

Namely, we introduce a simpler, hypothetical, computation

(called a pseudo systolic computation) that is obtained by

forcing some synchronization on the self-timed computation.

The additional synchronization may only slow down execution,

and hence the execution time of the pseudo systolic computa-

tion forms an upper bound on the execution time of the

self-timed computation.

A pseudo systolic version of the self-timed computation

discussed in this section may be obtained by replacing step

3 in CYCLE 1 by the following

3) wait for a synchronization signal SYNC ;

Ry - Ry + Ra * Rx

The purpose of the SYNC signal is the synchronization

of all the cells such that the execution of the network

alternates between two phases; a communication phase and a

processing phase. During the communication phase, the data

flows in the network until each cell is either blocked wait-

ing for data (in steps 2.1 or 2.2), or waiting for SYNC (in

step 3). We assume that all the cells are connected to a

hypothetical controller that issues the signal SYNC after it

detects the termination of the communication phase. At that

instant, all the cells that are waiting in step 3 perform

-16-

the multiplication simultaneously, while the other cells

remain idle. This is the processing phase. A communication

phase followed by a processing, phase is called a global

cycle of the network. In this paper, we let N be the total

number of global cycles needed to terminate the computation,

and we denote by CPt and PP t-l,...,N, the computation

.4 phase and the processing phase, respectively, of the global

cycle t.

Given that external data on 13 14 and I are avail-

able when needed, we may define the function a

[-Vl,V2]x[l,N] - A such that a(k,t) is the element of A that

is stored in the register Ra of cell k (read from port 13)

during the processing phase PPt" Although, for any specific

t, a(k,t) is defined for all k cells, some cells will be

idle during PPt' and hence, will not operate on a(k,t). Let

Mt be the set of cells that are not idle during PPt, and

define the tth computation front CFt as the set of elements

of A that are operated upon during that phase. More

* specifically,

C. t - (a(k,t) : k e Mt)

The succession of computation fronts represents the

progress in the execution of the pseudo systolic computa-

tion. More specifically, given a certain matrix, we may

* connect the elements of each computation front by a piece-

wise linear curve and thus obtain a visual picture that

describes the propagation of the computation. For example,

...... W rrJ Wfl .. ~ r. Vv w S %1; '. --. *.. , -.- -

-17-

we show in Fig 4 the different computation fronts that

result from the pseudo systolic execution of MAT/VEC on the

matrix A of Fig l.a. For clarity, we represent each non

zero elements, ai' j 6 Sk , of A by its stripe number k, and

we represent the zero elements of A by dots. Note that the

concept of computation fronts is the same as that suggested

in (17]. However, by allowing irregular fronts, we are able

to model data driven computations that depend on the value

of the input as well as its availability.

3. 4 5.....
CF *4. .*.

. 3 . ./..

I4
>']'~ F g 4 -5omutt -n!ot

CF .2<..4

2 42
2- 3p2 .

Fig 4-Computation fronts

Computation fronts may be constructed systematically if

the conditions that governs the relation between the ele-

ments of the fronts are known. In order to derive these

conditions, we first observe that if aiO(i) is in CFt ,

then both yi and x k(i) should be at cell k during the pro-

cessing phase PPt" Similarly, if a 1 0oA) is in the same

front CF, then, both y, and x should be at cell q dur-
4S.-o

-18-

ing PPt" Assuming that q) k, then the sequential order of

the x and y data streams requires that L < i and

aq(A) a ak(i), respectively. In other words the following

*- should be satisfied

onstatenEyjat datat f2 cQnditJon: If a ,aM and

a l k(i), q > k, are in the same computation front, then

A < i and aq(A) > Ok") (5.a)

If the queues on the communication lines have infinite

capacity, then any number of data items may be buffered

between cells k and q. That is, there is no upper limit on

the values of (i-1) or (o_(A)-Ok(i)), and hence (5.a) is the

only necessary condition for a ±.,(i) and aA. JLGq to be in

the same front. More descriptively, (5.a) means that every

line segment in a computation front should have a slope s on

the J axis (see Fig 4) that satisfies

- < tan(s) < 0
that is

900 < s < 1800 (5.b)

In addition to. the condition imposed on each individual

front, we have to ensure that the fronts propagate in the

same direction. More specifically,

Unidiretional praGation ni.: If aiof(i) CPt and

a 1,ok(L) CF t > r, then

1%.

-19-

i > A (6)

Now, given the zero pattern of any matrix A, we may

construct the computation fronts of A as follows:

ALG1 : /* Construction of the computation fronts '/

1) Start from the upper left corner of A and construct CFI,

such that,

Cl) It includes as many nonzero elements of A as possible

C2) Condition (5) is satisfied, and

C3) All elements of A enclosed between CF1 and the two

axes are zeroes (implied by condition (6)).

2) For t-2,3,..., repeat until every non zero element of A

is in some front

2.1) Given CFt l , construct CFt such that

Cl) It includes as many nonzero elements of A as possible

C2) Condition (5) is satisfied, and

C3) All elements of A enclosed between CFt_ and CFt

are zeroes (implied by condition (6)).

By the definition of the pseudo systolic network, all

possible communications are performed before the beginning

of a processing phase. Moreover, every cell that receives

all its operands during the communication phase, executes

step 3 of CYCLE 1 upon reception of the SYNC' signal. For

these reasons, we construct the coputatio& fronts by

including in each front as many elements of A as possible.

Large matrices that appear in practical applications

have usually non zero diagonal elements. For this type of

.,'* t*

-20-

matrices, we may establish the following lower bound:

proposition J1: If A is an nxn matrix with non zero diagonal

elements, then at least n computation fronts are required in

order to cover all the nonzero elements of A.

Proof: Each diagonal element should be in some front, and

condition (5) does not allow a single front to include more

than one diagonal element. []

In order to establish an upper bound on the number of

computation fronts, we study the question of not including

in each front as many elements of A as possible. More

specifically, assume that during the construction of CFt , a

particular element aiOk) can be included in CFt ' This

means that at the end of the communication phase CPt , cell k
is waiting in stop 3 of CYCLE 1. The exclusion of a

from CFt may only result if cell k remains idle during the

processing phase PPtF say because SYNC did not reach that

cell due to some transmission error. Although this error

does not cause a failure of the computation, it does slow it

down because cell k will stay at step 3 of CYCLE 1 waiting

for the SYNC signal of the next global cycle.

Hence, any set of computation fronts that satisfy con-

ditions (5) and (6) corresponds to some execution of the

pseudo systolic network with unreliable broadcast of SYNC.

In order to reserve the term computation fronts to the sets

that are constructed by ALGI and that correspond to the

-21-

execution of a reliable pseudo systolic network, we intro-

duce the following definition:

> ~ ninitin A: If condition Cl is removed from ALGl, then any

-set of fronts that result from the construction is called a

set of contours of the matrix A.[]

Clearly, the number of computation fronts that cover A

is less than or equal to the number of contours in any set

". of contours that covers A. This may be restated as follows:

Proposit 2: Given a matrix A, If we may include all the

non zero elements of A in N contours that satisfy (5) and

(6), then the pseudo systolic execution of MAT/VEC ter-

minates in at most N global cycles.

•~ *. In the next section we study a type of matrices for

K." which the upper bound on the number of computation fronts

provided by Proposition 2 coincides with the lower bound

established by Proposition 1.

..

.4 r

p.

- 22 -

A. KATRES WITH Mk-nV2ERAPPING STRTIPERS

Let S 1 and S 2 be two full stripes. By Definition 2, S1

. 2 if a1 (i)(a 2 (i), jml,...,n. A more restrictive condi-

tion may be obtained if we require that, for every

i-2,...,n, the intervals al(i)-a1(i-l) and a2 (i)-a2 (i-l) do

not overlap. That is, if

a? 1l(1) - 2r('-') -,.,n

The following definition extends this simple condition to

stripes that are not full. (
nefinition a: The v stripes of a matrix A are said to be

non-overlapping, if for any stripe Sk , _7 1 k' 2 , and any

element (iak(i))CSk, we have

a k(i) , Ok~m(i-M) (7)

where m is the smallest positive integer such that

(i-m,ak+m(i-m)) e Sk+m . If the inequality in (7) is strict,

that is (replaces A, then the stripes of A are called

strictly non overlapping. []

For example, the matrix shown in Fig 5.b has strictly

non overlapping stripes, while the matrix shown in Fig 5.a

has overlapping stripes. The positions where overlap occurs

are indicated on the figure.

The following lemma may be easily proved by induction

on (7).

-23-

Lana 1: The r stripes of A are non-overlapping if and only

if for any k, -r1gkdv2 , and integers i and m, such that

(i"ak(i))ESk, and (i-m,ak+m(i-m))eSk+m, equation (7) is

sat isf ied.]

_ x, " x......

x \• .\ . . .•
x . .\ ,- ... x x . .

\ .. I'll .. \. \x \ X _ Ix~ X .- , x .. . • •\. x..xxx x .

~a....................... ._.. :

"(a) A matrix with (b) The same matrix with
"overlapping str ipes str ictly non overlapping str ipes

t Fig 5

. The property of strictly non overlapping stripes

*guarantees that if both ai k~)and y. are at cell k dur-

~ing a specific global cycle t, then Xok(i) may not be locked

, behind another cell k+m, m>O, and hence should arrive at

cell Ic during the same global cycle t. In other words, the

-\ x
Nx

.*," computation is not delayed due to internal data conflicts.

":' .,This is formalized by the following pr opos it ion: ::

x

PEr ni.i(n a): Let A be a matrix with non-ero diagonal ele-

ments. If A is striped such that all its diagonal elements

Sare covered by one stripe and all its stripes are strictly
non-overlapping, then the pseudo systolic computation of

• .12.MAT/VEC, with input matrix A, terminates in exactly n global

mpt

are oveed b on strpe nd al is stipe arestrctl

-24-

cycles.
-4

Proof: Let w-w1 +9 2+1 be the stripe count of A, and denote

the stripes of A by Sk, k--v ,..., O,...,T r2 , where S (S

and SO is the stripe that contains all the diagonals. Con-

struct for each r-l,...,n a contour Cr that includes ar, r

* and has a slope of one stripe per row. That is Cr includes

for each k-7wl,...,wI2, the element (if any) of stripe k

which is at row r-k. More specifically,

Cr - {ark,o (rk) : -1l<k<r 2 and (r-k,a k(r-k)) 6 Sk (8)

For any specific ai#0, there exists a unique k such

that ai'j e Sk' that is ak(i)-j. Hence, there exists

exactly one contour that includes aij, namely Cik. In

other words, the contours Cr, r-l,...,n cover all the non

zero elements of A. Moreover, If vC v and

au-k'ok(u-k) e Cu are in the same stripe Sk' then v-k>u-k

implies that v>u. That is the condition of unidirectional

propagation, namely equ (6), is satisfied.

It remains to prove that the consistency of data flow

condition, namely equ. (5), is satisfied. Let (i,ok(i)) and

(1,o (1) be any two elements in Cr. If q > k, then from the
q q*

definition of C r , i-r-k and I-r-q, and hence I < i. But the

stripes of A are strictly non overlapping, and thus, by

using m-q-k in (7), we obtain

Ok(i) (k+<k(i-(q-k)) a q(r-k-q+k) - aq(L)
q q

-25-

which satisfies (5), and completes the proof that all the

*non zero elements of A may be covered by n contours that

satisfy (5) and (6). The result of the proposition, then,

follows directly from Propositions 1 and 2. []

Proposition 3 applies only to matrices with strictly

non overlapping stripes. A similar result may be obtained

for non overlapping stripes, if we weaken the condition on

computation fronts (contours) such that the line segments of

a specific front (contour) may be vertical. That is 0(1)

and ok(i) in (5.a) may be equal, which means that a com-

ponent of the x data stream may be at two different cells k

and q during the same processing phase. This may be

achieved if each cell in MAT/VEC writes, immediately, on 01

the value of x that it reads from 1 More precisely, the

operation of each cell (CYCLE 1) should be modified to the

following:

CYCLE 2: /* Initially, CX-CY-0 = /

1l) Ra (13] ; Rj - 14] ; Ri - 15]

2) Do steps 2.1 and 2.2 in parallel

2.1) wait until data is available on 1

Rx - [Il] , - Rx ; CX - CX + 1

If CX (Rj Then Go To 2.1

Else JOIN step 2.2.

2.2) wait until data is available on 12

Ry - (12] [= CY CY + 1

If CY (Ri Then (02 - Ry ; Go To 2.2)

- -- -~ 0 2 ~

,i~

- 26 -

Else JOIN step 2.1.

3) Ry RyR+ a* Rx

4) 02 -y.

The proof of the following proposition is very similar

to that of Proposition 3.

Proposition A: Let A be a matrix with non-zero diagonal ele-

ments, that is striped such that all its diagonal elements

are covered by one stripe and all its stripes are non-

overlapping. If each cell executes CYCLE 2, then the pseudo

systolic computation of MAT/VEC, with input A, terminates in

n global cycles.[]

Given a sparse matrix A, the advantage of constructing

a non-overlapping stripe structure for A is clear. However,

assuming that v1 is minimum number of stripes that may cover

A, and Wn is the number of non-overlapping stripes that may

cover A, then, usually, v n > vI. Hence, a trade off should

be considered between 1) using a network with vm cells that

terminates execution in n global cycles, or 2) using a net-

work with r cells which requires an execution time larger

than n global cycles.

The cost of the determination of a non-overlapping

stripe structure for general sparse matrices is usually

high. More specifically, the modification of the algorithm

given in the appendix such that to include condition (7)

requires some form of back-tracking, which is costly. How-

-27-

ever, for some type of matrices, non-overlapping stripes may

be obtained for very low additional costs. For example, for

the class of finite element stiffness matrices considered in

' . [12], non-overlapping stripes may be obtained by renumbering

the nodes of the grid from which the matrix is generated.

Besides the number of global cycles, the execution time

of MAT/VEC, is determined by the time for the completion of

each global cycle, which depends on the communication

activities that takes place during the communication phase

of the cycle. We consider these activities in some details.

. ,

-I

•.
I

-28-

., S. !ba eoiminn icat ion isMA,

By the definition of pseudo systolic networks, no com-

munication takes place during the procesaing phases of glo-

bal cycles. Hence, during a specific processing phase PPtF i

data assumes a static profile. In other words, a function

may be defined for each data stream to specify the data

items at each computational cell.

For example, consider the x data stream in MAT/VEC and

assume that the register Rx is set initially to an arbitrary

value, say x0 (the value of x is irrelevant to the computa-

tion). The x-stream profile at the processing phase PPt may

then be specified by a function xPt:[-viw 2]-[0,n] such that

xPt(k) = j, where x is the value of the register Rx in cell

k during PPt" The y-stream profile at PPt may be specified

by a similar function yPt:[-wl'w2]-[On]. Note that the

registers Rx and Ry contain always some values, and hence

xPt and yPt are defined for every cell k.

If k4Wt, that is cell k is not idle during PPt, then

xPt(k) and yPt(k) may be determined from the computation

front CPt . More specifically, if ke~t, then a.,ok() £m t

for some 1, and hence, y, and xok(f) are at cell k during

PP" That is

alok(A) " C t 0 yPt(k)-L and xPt(k)lOk(A) (9)

We call the values of xPt(k) and yPt(k), for kEMt , the knots

of the profiles. On the other hand, if k$Mt , then the

'54

-29-

values of xPt(k) and yPt(k) may not be determined from a

simple formula. However, from the specification of the

operation of each cell (CYCLE 1), it is clear that the fol-

lowing properties should be satisfied for k-- 1 , ... , 2 -1 and

any t:

(xPt(k+l) if k+l e Mt
xPt(k) t k+l) if k+l $ Mt (10.a)

/ yPt(k+l) if k e Mt

SPt (k) yPt(k+l) if k $ Mt (10.b)

Note that it is possible that xPt (k)-xPt (k+l) if

.k+l$M t . More specifically, when cell k+l is waiting for a
p.

new input, its register Rx keeps the old value of x that has

been written on 01 during CPt. If this value is also read

by cell k during CPt , then the registers Rx in both cells k

and k+l contain the same value during PPt*

Also, the elements of each stream arrive at a specific

cell in order. That is, the following is satisfied for

k-- 1 '"..., 2 and any t:

[<xPt (k) if k eMt

x t (k) •xPt+l(k) if k $ Mt (1l.a)

< ,Pt+l(k if k e Mt

YPt (k) ypt+1 (k) if k % Mt (ll.b)

Again, the equalities may hold because a register does

retain its value if it is not overwritten by a new one.

Equations (10) and (11) force on data profiles the same

-, . - , . .- .. . , ', ., , -. . , ,, -, . . - , . ,,, .- ..AL.

-.30 -

conditions that equations (5) and (6) force on computation

fronts. In fact, it is straight forward to derive (5) and

(6) from (10) and (11). Moreover, given some computation

fronts which satisfy (5) and (6), that is which simulate an

execution of MAT/VEC, there should exist some functions that

satisfy (9), (10) and (11) and correspond to the data pro-

files during execution. However, the mathematical construc-

tion of these functions is complex and involves the solution

of a set of simultaneous inequalities, namely (10) and (11).

For this reason, we seek further restrictions on the compu-

tation fronts and data profiles, by limiting the communica-

tion capabilities of the network.

* j. (niniat ign links with Ii.±tad buf a aci±

A communication link directed from a cell k to cell k+l

may be regarded as a queue. Only cell k may append to this

queue and only cell k+l may access (and delete) its front

element. So far, we have assumed that the communication

queues (buffers) in WAT/VEC have infinite capacity, that is

dxmdy- , where dx and dy are the capacities of individual

queues on the x-stream and y-stream, respectively. With

this assumption, we were able to derive the conditions (5)

A and (6) which enable us to construct the computation front

for any given matrix. Clearly, any limitation on dx or dy

represents some additional restrictions that should be taken

into account during that construction.

n.

" Mot • spec ifilcally, and without go ing into the

-31-

implementation details of the conunication protocols, if x

and xv are at cells k and k+l, respectively, during the pro-

ceasing phase PPt, then v-u elements of the x-stream should

be buffered between the two cells, which requires a queue

capacity of, at least, that size. That is

xP t(k+l) - tP(k) d d (12.a)

Similarly, for the y-stream

yPt(k) - yPt(k+l) d dy (12.b)

Equations (12) may be translated into restrictions on

computation fronts. More precisely, we may derive the fol-

' lowing from (9) and (12):

Buffer c condiLtin: If a,a q() and ai,ak(i) , q > k,

are in the same computation front CFt , then

and aq(t) -k(i) a (q-k) dx (13.a)

i - L d (q-k) d (13.b)

y

The buffer capacity condition is weaker than conditions

(12) because it restricts the collective capacity of the

links between cells q and k, rather that the capacities of

the individual links. In order to clarify this point let

dx-3, q-k+2, i-A+2, and ak+2(i-2)-ak(i)-6 . Clearly, with

these values, (13.a) is satisfied, and by definition,

xPt(k+2)-ak+2(i-2) and xPt(k)-ak(i). Although both (12.a)

and (13.a) specify that at most 2dx-6 data elements may be

|K

.5 o " * - " - ° , - * - ,- • - . . . - - - o •
.* '-, ,"",-,-' ""-. '. ,.".,', ,, " ,'2,"-_ .,.,'-...-""'€ .;...,2'..',.. -.. ''. ., ".,,,.,

- 32 -

buffered between cells k and k+2, only (12.a) specifies that

three of these elements should be buffered between cells k

and k+l and the other three between cells k+l and k+2. More

specifically, (13.a) does not put any restriction on

xPt(k+l), while (12.a) requires that xPt(k+l)-ok(i)+ 3. Now,

let ai-lak+l(i-i) be in the next computation front CFt+1

with *k+l(i-l)-ak(1)+2 , that is xPt+l(k+l)-ak(i)+2 . It is

easy to see that the above data is inconsistent because

- xPt(k+l) > xPt+l(k+l)' which violates (ll.a). However, by

allowing arbitrary values to xPt(k+l), the buffer capacity

condition (13.a) does not detect this inconsistency.

If conditions (13) are added to ALG1 of Section 3, then

computation fronts that satisfy (5), (6) and (13) may be

constructed for any given matrix. However, because (13) is

weaker than (12), the constructed fronts represent the exe-

cution of MAT/VEC only if it is possible to find a

corresponding data profile (with knots specified by (9))

that satisfy (10), (11) and (12). Although this technique

of constructing the computation fronts and then checking

*that they represent the actual execution of the network may,

in general, fall, It can be used to show that the results of

Propositions 2 and 3 are independent of the size of the

queues on the y-stream links.

More specifically, consider the minimum value of dy

yy

namely d y-1, and keep d x- It is easy to check that the

contours Cr, r-l,...,n, used in the proof of Proposition 3

*1N

[-', P~ ,,--,f., ' " " --r ,. - ," .,- .-.. . .- .- ,r .- .,' v' .- ,,' ., .r .,",4" ,,_,, ,r ," -" , -- '.,. . --, .. ." ,, .,, .,. ,

-33-

do satisfy (13.b) with dy-1. Moreover, lot

yPr(k) - r-k r-1,...,n, k--v " 1 " 2 (14)

The knots of this profile corresponds to Cr (as specified by

(9)). Also, (14) satisfies (10.b), (ll.b) and (12.b) with

dy-1. Hence, the n contours Cr given by (8) correspond to
yr

some execution of MAT/VEC with dy-1.

In other words, if dy-1 and dx-m in MAT/VEC, then the

execution of the network for any nxn matrix with non zero

diagonal elements does terminate in n global cycles.

Although this is a good result, it is preferable to replace

the condition d - by one of the form dx b dmin . In order

to derive the lower bound dmin' we should construct an x-

stream profile that satisfies (9), (10.a) and (ll.a), and

then from (12.a) get

dmin - max(xPr (k+l)-xP,(k)I r-l,..,n, k--vl+l,.. , 2) (15)
mn r,k

For general striped matrices, the construction of such

x-stream profile seems difficult. However, for certain

q types of stripe matrices the construction is straight for-

ward (see [12] for examples).

In order to give further meaning to the bound (15), it

is useful to consider matrices with full, non-overlapping,

stripes. In this case, it is easy to see that the contours

given by (8) are the actual computation fronts, that is

;, I. = {vl "'"v2 } (16)
t, (atkok(t-k)

. . ',

- 34 -

From (9), the corresponding x-stream profile is given by

XPt(k) - aok(t-k) (17)

which by the very properties of the stripes satisfy (10.a)

and (l..b). Now, from (15),

A dmin - max(ak+l(t-k-l) - ak(t-k))
k,t

(max(ak+l(t-k) - ak(t-k)
k,t

- the maximum separation between the

stripes of the matrix.

In other words, the separation between the stripes deter-

mines the minimum size of the queues needed on the x-stream

communication links.

Finally, we note that, with finite queues capacity, the

communication protocol should not allow a cell to write on a

queue that is full. More specifically, with dy -1, theyI

statement 02 -Ry in CYCLE 1, should be interpreted as "wait

until the queue is not full, then write the content of Ry".

i.Z. £omnuncation t.ma in M&/=

Let Tm be the time required by a cell in MAT/VEC to

complete a floating point operation (step 3 of CYCLE 1), and

let "rc be the time required to move a data item from the

input port of some cell to that of the next cell. For exam-

ple, a data item, say xj, may be moved from port I, of cell

k to port I.1 of cell k-l in time Tc. This includes the time

V.'

% *- % " ". ", "% ' " ' " "" '*" '." -"' " "' -- - -" " 'd" ." .'. / . '.-" "'''J " J" ..' ..- " -'. . ".r.'.f Ir

-35-

for the execution of step 2.1 of CYCLE 1 and the associated

protocols, as well as the time required for the signals to

travel on the communication lines.

In order to estimate the execution time of any specific

global cycle, we assume that cell k executes steps 2.1 1t(k)

times and step 2.2 qt(k) times during the communication

phase CPt of the tth global cycle. Clearly, It(k) and 7t(k)

may be estimated from the data profiles as follows:

It(k) : xPt(k) - xPt1 (k) (18.a)71t (k) -=yet(k) -yet-l(k) (18.b)

However, each cell in MAT/VEC has to wait until all the

other cells complete their communication activities. Hence,

the duration of the communication phase CPt is determined by

the maximum of It(k) and 71t(k) for all k. That is by

an " max {It(k) I k-v , ..., 2) (19.a)

-t max (1t(k) I k-w 1 , ... ,72) (19.b)

From CYCLE 1, it is now easy to see that the time

required for the completion of global cycle t is

T 7m + max(t 0 71)t m axt 't) T

yFor dy- and dbm n the y-stream profile is given by

(14), from which we find that wt-l, and hence the total exe-

ii cution time of MAT/VEC is

N N
T TMN r M+ r c t(20)
t-l t-I

la-

- 36 -

The values of it, t-l,...,N, depend on the specific

stripe structure of the input matrix. However, without

knowing the specific stripe structure of the matrix, we may

only bound the execution time of MAT/VEC by

where T m max c

iImaxt I tl,...,N)

As we did in the last section, we may give further

meaning to jmax by considering matrices with full, non-

'$ overlapping, stripes. For this type of matrices, the x-

stream profile is given by (17), from which we obtain

?"max = max {ak(t-k)-ak(t-k-)) - max(ak(i)-ok(i-l))

k, t k,i

- the maximum slope of any stripe in the matrix.
.

Note that equation (20) estimates the execution time of

MAT/VEC assuming the hypothetical pseudo systolic synchroni-

zation. In actual execution, however, the synchronization

of 'r/VEC should be merely data driven (no wait in step 3
"V.

of CYCLE 1), and hence faster than the pseudo systolic exe-

cution. In other words, the value of T given by (20) is an

upper bound for the actual execution time of MAT/VEC. This

upper bound is used in [12] to study the performance of

MAT/VEC for finite element matrices.

-37-

fi. Thm& ite.rative snJn-inn 2t. aL lijnear stysams

In this section, we consider one of the most efficient

iterative techniques for the solution of linear systems of

the form Ax-z Namely the preconditioned conjugate gradient

method. This method applies conjugate gradient iterations

to the system M -A x = M- z, where the preconditioner matrix
1. is a suitable approximation of A1. In many precondition-

ing techniques, such as incomplete factor izations [11] and

-. "SSOR [1], the matrix M may be expressed as the product of a

unit lower triangular matrix L, a diagonal matrix D, and a

unit upper triangular matrix U. That is M = LDU. The pro-

perty that makes these preconditioners attractive is that

the matrices L and U have the same zero structures as the

lower and upper parts of the matrix A, respectively.

V. The bulk of the work in each iteration of the precondi-

tioned conjugate gradient method is the multiplication of

9-4 "the matrix A by a vector, and the solution of two triangular

".. "-linear systems of the forms Ly-u and Uz-v.

It was shown in the previous sections that, if a suit-

able stripe structure is found for the matrix A, then the

multiplication of A by any vector may be efficiently exe-

-.* cuted in parallel on the linear network MAT/VEC. Here, we

show that, with very simple modification, MAT/VEC may also

be used for the solution of any unit lower triangular system
L

Ly-u. The unit upper triangular system Uz-v, may also be

'' .:, viewed as a unit lower triangular system uTz',vO where z"

L 1' A

-38-

N' and v' are obtained by reversing the elements of z and v,

*respectively. That is, if the order of U is n, then

zoi Zn i+l and z' n-i+l"

Assume, as before, that A has V 1+V 2 +l stripes

S- <...<S V, where S is a full stripe that contains all

the diagonal elements. Hence, L has v +1 stripes that coin-

cide with those in the lower triangular part of A. Namely,

S, #... ,S 0.

Let MAT/VEC, with d y=1 and dxbdmin , be applied to the

multiplication of L by any vector (Fig 6). In this case,

the inputs on ports 14 and I5 of cell 0 are not needed

because all the elements in the full stripe

Soa((ii)Ii-l,...,n) are supplied, in order, to port 13

For the same reason, the counters CX and CY of CYCLE i are

not needed in cell 0. In other words, the cycle of cell 0

may be described by

Figure 6- A modified version of MAT/VEC

CYCLE 3:

1) Ra (13]

-39-

2) wait until data is available on 11 and 12

Rx- [I1] ; Ry- [1 2]

3) Ry = Ry + Ra * Rx
4)0 -Rx ; 0 Ry

The same network of Fig 6 may be used for the solution

of the triangular system Ly-u if the elements of the vector

u, instead of the elements of So, are supplied to 13 of cell

0, and the operation of this particular cell is described by

the following cycle (instead of CYCLE 3).

CYCLE 4:

1) Ra = [13]

2) wait until data is available on 1

Ry [(12]

3) Ry - -Ry Ra

4)01 -Ry ; 2- Ry.

We call the resulting network TRIANG. Note that the input

%, port 11 of cell 0 in TRIANG is not used, and hence no data

need to be supplied on it. Also, the elements of the result

vector y are produced on the output port 02.

The computation fronts for the pseudo systolic execu-

tion of TR[ANG may be obtained by applying our earlier rules

to a matrix L which is obtained by replacing the diagonal

elements in L by the elements of the vector u. But the zero

structure of L is identical to that of L, which, in turns,

is identical to the lower triangle of A. Hence, the stripe

-40 -

structure of A may be used to estimate the execution time of

TRIANG. More specifically, if the stripes of A are strictly

non-overlapping, then the pseudo systolic execution of TRI-

ANG terminates in n global cycles. The capacities of the

buffers, as well as the communication time, in TRIANG may be

also estimated from the stripe structure of A.

Finally, we note that the networks MAT/VEC and TRIANG

may be used as two high speed peripheral devices for a host

computer that executes the preconditioned conjugate gradient

iterations. In fact, only MAT/VEC is needed if a mechanism

is available for switching the function of cell 0 between

CYCLE 3 and CYCLE 4.

'V..

4

-F r

-41-

.2. QHCLLSJ ION

We introduced the concept of striping a sparse matrix,

which is, namely, the inclusion of the non-zero elements of

the matrix in a structure which is regular enough to allow

for efficient parallel manipulation. Although the concept

is general, we only discussed its application to the design

of regular VLSI networks for sparse matrices.

The operation of each cell in the networks presented in

this paper are data dependent, as well as data-driven. This

makes the application of formal analysis models (e.g.

[5,14]) extremely difficult. For this reason, the addi-

tional simplification of pseudo systolic synchronization was

assumed, which allowed for the establishment of upper bounds

on the performance of the networks. The actual performance

of the data-driven networks may only be estimated by a

detailed simulation of the computations.

It is proved that for an nxn matrix with v non-

overlapping stripes, (w<<n) and minimum separation dmin

between stripes, the multiplication of the matrix by a vec-

tot may be performed in n global cycles, using a linear net-

work of v cells connected by links that can buffer dmin data

items. The same result also applies to the solution of tri-

angular linear systems.

The task of finding a stripe structure for a sparse

matrix may be accomplished in many different ways, including

- 42-

the algorithm given in the appendix. However, for some

types of matrices, a stripe structure may be naturally

determined from the underlying problems. For example,

stiffness matrices arising in finite element analysis are

usually generated from finite grids, and the stripe struc-

ture of a stiffness matrix is directly specified by the

neighboring relation between the nodes of the corresponding

grid. For more details we refer to (12].

Acknow ladgomnt

*I would like to thank Werner Rheinboldt for his many

comments that helped in the formalization of the concept of

striped matrices.

4
*v

-43-

An algorithm (in the form of a Fortran subroutine) is

presented for the determination of a stripe structure for

any given matrix A. The structure is specified by a matrix

pPA in which each column k specifies the positions of the

elements in stripe Sk (see equation l.b). More precisely,

if PA(i,k)-j, then a. S and if PA(i,k)-0, then, there is

no elements in row i that belong to Sk. Note that, for sim-

plicity, we replaced -b1 in (l.b) by 0.

The linear array "Last" should be set, in the calling

program, such that Last(i), laidn, contains the number of

non-zero elements in row i of the matrix A. Also, the

I integer "nstrip" should be set to the maximum of Last(i),

i-l,... ,n. The column numbers of the "Last(i)" elements in

row i of A are initially stored in the first "Last(i)" loca-

tions of row i of PA (see Fig 7). The subroutine, then,

transforms this input form of PA into the one that specifies
a stripe structure of A. The number of stripes is also

returned In the variable Onstrip". Following is the algo-

rithm:

subroutine stripes(PA, last,n,nstrip)
-. integer PA(n,l), last(n)

c
j -0

10 j- j + 1
do 1000 i-2,n

c
c " Find the previous element in the current stripe "

200 m- 0

i L
V!

-9. p!

- 44 -

xx. x 12 50 0125

. x. x. x 2460 0246

x x. . . . 1 3 0 0 1 3 0, 0

.xxx x 3457 3457

S .x x 5 70 0 0 5 7 0

. x.x. 4600 4600

.xx 6700 6700

(a) the matrix A (b) PA at input (c) PA at output

Fig 7 - Inputs and outputs of subroutine stripes

300 m M + 1
if(i-m .LT. 0) go to 1000
if(PA(i-m,j) .EQ. 0) go to 300

c ** If stripe is not strictly increasing, then shift *
c aa row i-m by one position starting at column j **

if(PA(i-m,j) .GE. P(i,j)) then
call shift(PA,last,n,nstrip,i-m,j)
go to 300

end if
c
1000 continue

c
if(j .LT. nstrip) go to 10

c

return
end

subroutine shift(P,last,nstrip,n,i,j)
integer P(nl),last(n)

last(i) - last(i) + 1
-"t - last(i)

if(jt .LT. nstrip) nstrip -nstrip + 1-
•0 i P(ijt) P(ijt-1)

jt - jt -1
if(jt .GT. J) go to 10

P(i,J) - 0
return
end

ac a tttta atttattttttatattaatattataatattttatattattataataatattataataata a t

., -45 -

Finally, we note that it is possible to modify the

above algorithm such that the resulting stripes are non-

overlapping. However, it seems impossible to enforce the

condition of strictly non-overlapping stripes. In fact, the

existence of a stripe structure with strictly non-

overlapping stripes is not always guaranteed. The matrix of

Fig 7(a) is an example for which such structure does not

-. ' exist.

-.-

..

iS.'-.

- 46-

* REFERENCES

[1] L. Adams, "Iterative Algorithms for Large Sparse
Linear Systems on Parallel Computers," Ph.D. Thesis,
Univ. of Virginia (October 1982).

[2] L. Adams and R. Voigt, "Design, Development and Use of
the Finite Element Machine," ICASE Report-172250,
NASA-Langley Research Center (October 1983).

[3] H. Amano, T. Boku, T. Kudoh and H. Aiso, "A New Ver-
sion of the Sparse Matrix Solving Machine," Proc. of
the 12th International Symp. on Computer Architecture
(June 1985), pp. 100-107.

(4] C. Arnold, M. Parr and M. Dewe, "An Efficient Parallel
Algorithm for the Solution of Large Sparse Linear

Matrix Equations," IEEE Trans. on Computers, C-32
(March 1983), pp. 265-272.

[5] M. Chen, "Space-Time Algorithms: Semantics and Metho-
dology," Ph.D. Thesis, California Institute of Technol-
ogy (May 1983).

[6] P. Concus, G. Golub and D. O'Leary, "A Generalized
Conjugate Gradient Method for the Numerical Solution of
Elliptic PDE's," in Sparse Matrix Computations. Ed. by
J. Bunch and D. Rose, Academic Press (1976).

[]1. Evans, "On Preconditioned Iterative Methods for
Partial Differential Equations," in Preconditioning
Methods, Theory and Applications. Ed. by D. Evans,
Gordon & Breach Science Publishers (1982).

[8] A. George and J. Liu, "Computer Solutions of Large
Sparse Positive Definite Systems," Prentice-Hall
series in Computational Mathematics (1981).

[9] H. T. Kung and C. E. Leiserson, "Systolic Arrays for

VLSI," in Introduction to VLSI Systems (1980). Ed. by
C. Mead and L. Conway, Addison-Wesley, Reading, Mass.

[10] S. Y. Kung, K. S. Arun, R. J. Gal-Ezer and 0. B. Rao,
"Wavefront Array Processor: Language, Architecture and

, a, -47-

Applications," IEEE Trans. on Computers, C-31 (November
1982), pp. 1056-1066.

[11] T. Manteuffel, "An Incomplete Factorization Technique
for Positive Definite Linear Systems," Mathematics of
Computation 34-150 (April 1980), pp. 673-697.

(12] R. Melhem, "Parallel Solution of Linear Systems with
Striped Sparse Matrices; Part 2: Stiffness Matrices; A
Case Study," Tech. Report. ICMA-86-92 (January 1986).

[13] R. Melhem, "A Study of Data Interlock in VLSI Computa-
tional Networks for Sparse Matrix Multiplication,"
Tech. Report TR-CS-505, Dept. of Comptuer Science, Pur-
due University (1985).

[14] R. Melhem and W. Rheinholdt, "A Mathematical Model for
the Verification of Systolic Networks," SIAM J. on
Computing, Vol. 13-3 (August 1984), pp. 341-365.

(15] D. Reed and M. Patrick, "Iterative Solution of Large,
Sparse Linear Systems on a Static Data Flow Architec-
ture: Performance Studies," IEEE Trans. on Computers,
C-36 (October 1985), pp. 874-880.

(16] D. Reed and M. Patrick, "Parallel, Iterative Solution
of Sparse Linear Systems: Models and Architectures,"
Parallel Computing 2 (1985), pp. 45-67.

[17] V. Weiser and A. Davis, "A Wavefront Notation Tool for
VLSI Array Design," in VLSI Systems and Computations
(1981). Ed. by H. T. Kung, B. Sproull and G. Steele,
Computer Science Press.

(18] 0. Wing, "A Content Addressable Systolic Array for
Sparse Matrix Computation," J. of Parallel and Distri-
buted Computing 2 (1985), pp. 170-181.

L

MM

